\(\int \frac {1}{(1+2 x)^{5/2} (2+3 x+5 x^2)^2} \, dx\) [2322]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 296 \[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=-\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {5 \sqrt {\frac {2}{217} \left (12504542+2632525 \sqrt {35}\right )} \arctan \left (\frac {\sqrt {10 \left (2+\sqrt {35}\right )}-10 \sqrt {1+2 x}}{\sqrt {10 \left (-2+\sqrt {35}\right )}}\right )}{10633}-\frac {5 \sqrt {\frac {2}{217} \left (12504542+2632525 \sqrt {35}\right )} \arctan \left (\frac {\sqrt {10 \left (2+\sqrt {35}\right )}+10 \sqrt {1+2 x}}{\sqrt {10 \left (-2+\sqrt {35}\right )}}\right )}{10633}-\frac {5 \sqrt {\frac {1}{434} \left (-12504542+2632525 \sqrt {35}\right )} \log \left (\sqrt {35}-\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {1+2 x}+5 (1+2 x)\right )}{10633}+\frac {5 \sqrt {\frac {1}{434} \left (-12504542+2632525 \sqrt {35}\right )} \log \left (\sqrt {35}+\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {1+2 x}+5 (1+2 x)\right )}{10633} \]

[Out]

-820/4557/(1+2*x)^(3/2)+1/217*(37+20*x)/(1+2*x)^(3/2)/(5*x^2+3*x+2)-4680/10633/(1+2*x)^(1/2)-5/4614722*ln(5+10
*x+35^(1/2)-(1+2*x)^(1/2)*(20+10*35^(1/2))^(1/2))*(-5426971228+1142515850*35^(1/2))^(1/2)+5/4614722*ln(5+10*x+
35^(1/2)+(1+2*x)^(1/2)*(20+10*35^(1/2))^(1/2))*(-5426971228+1142515850*35^(1/2))^(1/2)+5/2307361*arctan((-10*(
1+2*x)^(1/2)+(20+10*35^(1/2))^(1/2))/(-20+10*35^(1/2))^(1/2))*(5426971228+1142515850*35^(1/2))^(1/2)-5/2307361
*arctan((10*(1+2*x)^(1/2)+(20+10*35^(1/2))^(1/2))/(-20+10*35^(1/2))^(1/2))*(5426971228+1142515850*35^(1/2))^(1
/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {754, 842, 840, 1183, 648, 632, 210, 642} \[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=\frac {5 \sqrt {\frac {2}{217} \left (12504542+2632525 \sqrt {35}\right )} \arctan \left (\frac {\sqrt {10 \left (2+\sqrt {35}\right )}-10 \sqrt {2 x+1}}{\sqrt {10 \left (\sqrt {35}-2\right )}}\right )}{10633}-\frac {5 \sqrt {\frac {2}{217} \left (12504542+2632525 \sqrt {35}\right )} \arctan \left (\frac {10 \sqrt {2 x+1}+\sqrt {10 \left (2+\sqrt {35}\right )}}{\sqrt {10 \left (\sqrt {35}-2\right )}}\right )}{10633}+\frac {20 x+37}{217 (2 x+1)^{3/2} \left (5 x^2+3 x+2\right )}-\frac {4680}{10633 \sqrt {2 x+1}}-\frac {820}{4557 (2 x+1)^{3/2}}-\frac {5 \sqrt {\frac {1}{434} \left (2632525 \sqrt {35}-12504542\right )} \log \left (5 (2 x+1)-\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {2 x+1}+\sqrt {35}\right )}{10633}+\frac {5 \sqrt {\frac {1}{434} \left (2632525 \sqrt {35}-12504542\right )} \log \left (5 (2 x+1)+\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {2 x+1}+\sqrt {35}\right )}{10633} \]

[In]

Int[1/((1 + 2*x)^(5/2)*(2 + 3*x + 5*x^2)^2),x]

[Out]

-820/(4557*(1 + 2*x)^(3/2)) - 4680/(10633*Sqrt[1 + 2*x]) + (37 + 20*x)/(217*(1 + 2*x)^(3/2)*(2 + 3*x + 5*x^2))
 + (5*Sqrt[(2*(12504542 + 2632525*Sqrt[35]))/217]*ArcTan[(Sqrt[10*(2 + Sqrt[35])] - 10*Sqrt[1 + 2*x])/Sqrt[10*
(-2 + Sqrt[35])]])/10633 - (5*Sqrt[(2*(12504542 + 2632525*Sqrt[35]))/217]*ArcTan[(Sqrt[10*(2 + Sqrt[35])] + 10
*Sqrt[1 + 2*x])/Sqrt[10*(-2 + Sqrt[35])]])/10633 - (5*Sqrt[(-12504542 + 2632525*Sqrt[35])/434]*Log[Sqrt[35] -
Sqrt[10*(2 + Sqrt[35])]*Sqrt[1 + 2*x] + 5*(1 + 2*x)])/10633 + (5*Sqrt[(-12504542 + 2632525*Sqrt[35])/434]*Log[
Sqrt[35] + Sqrt[10*(2 + Sqrt[35])]*Sqrt[1 + 2*x] + 5*(1 + 2*x)])/10633

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 754

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(b
*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e +
 a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 840

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 842

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e
*f - d*g)*((d + e*x)^(m + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[(d +
 e*x)^(m + 1)*(Simp[c*d*f - f*b*e + a*e*g - c*(e*f - d*g)*x, x]/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c,
d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && FractionQ[m] && LtQ[m, -1]

Rule 1183

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rubi steps \begin{align*} \text {integral}& = \frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {1}{217} \int \frac {255+100 x}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )} \, dx \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {\int \frac {145-2050 x}{(1+2 x)^{3/2} \left (2+3 x+5 x^2\right )} \, dx}{1519} \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {\int \frac {-8345-11700 x}{\sqrt {1+2 x} \left (2+3 x+5 x^2\right )} \, dx}{10633} \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {2 \text {Subst}\left (\int \frac {-4990-11700 x^2}{7-4 x^2+5 x^4} \, dx,x,\sqrt {1+2 x}\right )}{10633} \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {\text {Subst}\left (\int \frac {-998 \sqrt {10 \left (2+\sqrt {35}\right )}-\left (-4990+2340 \sqrt {35}\right ) x}{\sqrt {\frac {7}{5}}-\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )} x+x^2} \, dx,x,\sqrt {1+2 x}\right )}{10633 \sqrt {14 \left (2+\sqrt {35}\right )}}+\frac {\text {Subst}\left (\int \frac {-998 \sqrt {10 \left (2+\sqrt {35}\right )}+\left (-4990+2340 \sqrt {35}\right ) x}{\sqrt {\frac {7}{5}}+\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )} x+x^2} \, dx,x,\sqrt {1+2 x}\right )}{10633 \sqrt {14 \left (2+\sqrt {35}\right )}} \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {\left (5 \left (499-234 \sqrt {35}\right )\right ) \text {Subst}\left (\int \frac {-\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )}+2 x}{\sqrt {\frac {7}{5}}-\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )} x+x^2} \, dx,x,\sqrt {1+2 x}\right )}{10633 \sqrt {14 \left (2+\sqrt {35}\right )}}-\frac {\left (5 \left (499-234 \sqrt {35}\right )\right ) \text {Subst}\left (\int \frac {\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )}+2 x}{\sqrt {\frac {7}{5}}+\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )} x+x^2} \, dx,x,\sqrt {1+2 x}\right )}{10633 \sqrt {14 \left (2+\sqrt {35}\right )}}-\frac {\left (8190+499 \sqrt {35}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {\frac {7}{5}}-\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )} x+x^2} \, dx,x,\sqrt {1+2 x}\right )}{74431}-\frac {\left (8190+499 \sqrt {35}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {\frac {7}{5}}+\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )} x+x^2} \, dx,x,\sqrt {1+2 x}\right )}{74431} \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}-\frac {5 \sqrt {-\frac {6252271}{217}+\frac {376075 \sqrt {35}}{62}} \log \left (\sqrt {35}-\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {1+2 x}+5 (1+2 x)\right )}{10633}+\frac {5 \sqrt {-\frac {6252271}{217}+\frac {376075 \sqrt {35}}{62}} \log \left (\sqrt {35}+\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {1+2 x}+5 (1+2 x)\right )}{10633}+\frac {\left (2 \left (8190+499 \sqrt {35}\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {2}{5} \left (2-\sqrt {35}\right )-x^2} \, dx,x,-\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )}+2 \sqrt {1+2 x}\right )}{74431}+\frac {\left (2 \left (8190+499 \sqrt {35}\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {2}{5} \left (2-\sqrt {35}\right )-x^2} \, dx,x,\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )}+2 \sqrt {1+2 x}\right )}{74431} \\ & = -\frac {820}{4557 (1+2 x)^{3/2}}-\frac {4680}{10633 \sqrt {1+2 x}}+\frac {37+20 x}{217 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}+\frac {5 \sqrt {\frac {2}{7 \left (-2+\sqrt {35}\right )}} \left (499+234 \sqrt {35}\right ) \tan ^{-1}\left (\sqrt {\frac {5}{2 \left (-2+\sqrt {35}\right )}} \left (\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )}-2 \sqrt {1+2 x}\right )\right )}{10633}-\frac {5 \sqrt {\frac {2}{7 \left (-2+\sqrt {35}\right )}} \left (499+234 \sqrt {35}\right ) \tan ^{-1}\left (\sqrt {\frac {5}{2 \left (-2+\sqrt {35}\right )}} \left (\sqrt {\frac {2}{5} \left (2+\sqrt {35}\right )}+2 \sqrt {1+2 x}\right )\right )}{10633}-\frac {5 \sqrt {-\frac {6252271}{217}+\frac {376075 \sqrt {35}}{62}} \log \left (\sqrt {35}-\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {1+2 x}+5 (1+2 x)\right )}{10633}+\frac {5 \sqrt {-\frac {6252271}{217}+\frac {376075 \sqrt {35}}{62}} \log \left (\sqrt {35}+\sqrt {10 \left (2+\sqrt {35}\right )} \sqrt {1+2 x}+5 (1+2 x)\right )}{10633} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.35 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.48 \[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=\frac {2 \left (-\frac {217 \left (34121+112560 x+183140 x^2+140400 x^3\right )}{2 (1+2 x)^{3/2} \left (2+3 x+5 x^2\right )}-15 \sqrt {217 \left (12504542-1667459 i \sqrt {31}\right )} \arctan \left (\sqrt {\frac {1}{7} \left (-2-i \sqrt {31}\right )} \sqrt {1+2 x}\right )-15 \sqrt {217 \left (12504542+1667459 i \sqrt {31}\right )} \arctan \left (\sqrt {\frac {1}{7} i \left (2 i+\sqrt {31}\right )} \sqrt {1+2 x}\right )\right )}{6922083} \]

[In]

Integrate[1/((1 + 2*x)^(5/2)*(2 + 3*x + 5*x^2)^2),x]

[Out]

(2*((-217*(34121 + 112560*x + 183140*x^2 + 140400*x^3))/(2*(1 + 2*x)^(3/2)*(2 + 3*x + 5*x^2)) - 15*Sqrt[217*(1
2504542 - (1667459*I)*Sqrt[31])]*ArcTan[Sqrt[(-2 - I*Sqrt[31])/7]*Sqrt[1 + 2*x]] - 15*Sqrt[217*(12504542 + (16
67459*I)*Sqrt[31])]*ArcTan[Sqrt[(I/7)*(2*I + Sqrt[31])]*Sqrt[1 + 2*x]]))/6922083

Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.19

method result size
pseudoelliptic \(\frac {1015350 \left (x +\frac {1}{2}\right ) \sqrt {1+2 x}\, \left (\sqrt {5}-\frac {9188 \sqrt {7}}{6769}\right ) \left (x^{2}+\frac {3}{5} x +\frac {2}{5}\right ) \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {10 \sqrt {5}\, \sqrt {7}-20}\, \ln \left (\sqrt {5}\, \sqrt {7}-\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right )-1015350 \left (x +\frac {1}{2}\right ) \sqrt {1+2 x}\, \left (\sqrt {5}-\frac {9188 \sqrt {7}}{6769}\right ) \left (x^{2}+\frac {3}{5} x +\frac {2}{5}\right ) \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {10 \sqrt {5}\, \sqrt {7}-20}\, \ln \left (\sqrt {5}\, \sqrt {7}+\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right )+9281400 \left (\arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}-10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right )-\arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right )\right ) \left (x +\frac {1}{2}\right ) \left (x^{2}+\frac {3}{5} x +\frac {2}{5}\right ) \left (\sqrt {5}\, \sqrt {7}+\frac {8190}{499}\right ) \sqrt {1+2 x}-60933600 \left (x^{3}+\frac {9157}{7020} x^{2}+\frac {469}{585} x +\frac {34121}{140400}\right ) \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}\, \left (1+2 x \right )^{\frac {3}{2}} \left (69220830 x^{2}+41532498 x +27688332\right )}\) \(352\)
derivativedivides \(-\frac {16}{147 \left (1+2 x \right )^{\frac {3}{2}}}-\frac {128}{343 \sqrt {1+2 x}}-\frac {16 \left (\frac {89 \left (1+2 x \right )^{\frac {3}{2}}}{62}+\frac {233 \sqrt {1+2 x}}{620}\right )}{343 \left (\left (1+2 x \right )^{2}+\frac {3}{5}-\frac {8 x}{5}\right )}-\frac {\left (-33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \ln \left (\sqrt {5}\, \sqrt {7}-\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right )}{4614722}-\frac {10 \left (30938 \sqrt {5}\, \sqrt {7}+\frac {\left (-33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{10}\right ) \arctan \left (\frac {-\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right )}{2307361 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {\left (33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}-45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \ln \left (\sqrt {5}\, \sqrt {7}+\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right )}{4614722}-\frac {10 \left (30938 \sqrt {5}\, \sqrt {7}-\frac {\left (33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}-45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{10}\right ) \arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right )}{2307361 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\) \(433\)
default \(-\frac {16}{147 \left (1+2 x \right )^{\frac {3}{2}}}-\frac {128}{343 \sqrt {1+2 x}}-\frac {16 \left (\frac {89 \left (1+2 x \right )^{\frac {3}{2}}}{62}+\frac {233 \sqrt {1+2 x}}{620}\right )}{343 \left (\left (1+2 x \right )^{2}+\frac {3}{5}-\frac {8 x}{5}\right )}-\frac {\left (-33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \ln \left (\sqrt {5}\, \sqrt {7}-\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right )}{4614722}-\frac {10 \left (30938 \sqrt {5}\, \sqrt {7}+\frac {\left (-33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{10}\right ) \arctan \left (\frac {-\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right )}{2307361 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {\left (33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}-45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \ln \left (\sqrt {5}\, \sqrt {7}+\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right )}{4614722}-\frac {10 \left (30938 \sqrt {5}\, \sqrt {7}-\frac {\left (33845 \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}-45940 \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}\right ) \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{10}\right ) \arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right )}{2307361 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\) \(433\)
trager \(-\frac {140400 x^{3}+183140 x^{2}+112560 x +34121}{31899 \left (1+2 x \right )^{\frac {3}{2}} \left (5 x^{2}+3 x +2\right )}-\frac {10 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right ) \ln \left (\frac {-7577938592 x \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{5}-308754136562536 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{3} x +2286118004070180 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2} \sqrt {1+2 x}-116459925407168 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{3}-2720797097744165060 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right ) x -170548595197901724125 \sqrt {1+2 x}-1501216389977029664 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )}{868 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2} x +7502165 x -6669836}\right )}{10633}+\frac {10 \operatorname {RootOf}\left (\textit {\_Z}^{2}+47089 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2}+1356742807\right ) \ln \left (-\frac {-1082562656 \operatorname {RootOf}\left (\textit {\_Z}^{2}+47089 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2}+1356742807\right ) \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{4} x -18274525189608 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+47089 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2}+1356742807\right ) x +70869658126175580 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2} \sqrt {1+2 x}+16637132201024 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+47089 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2}+1356742807\right )-16528108437548820 \operatorname {RootOf}\left (\textit {\_Z}^{2}+47089 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2}+1356742807\right ) x +7328924922481506073415 \sqrt {1+2 x}+264894705503873760 \operatorname {RootOf}\left (\textit {\_Z}^{2}+47089 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2}+1356742807\right )}{868 \operatorname {RootOf}\left (107632 \textit {\_Z}^{4}+3101126416 \textit {\_Z}^{2}+34650939378125\right )^{2} x +17506919 x +6669836}\right )}{2307361}\) \(458\)
risch \(-\frac {140400 x^{3}+183140 x^{2}+112560 x +34121}{31899 \left (1+2 x \right )^{\frac {3}{2}} \left (5 x^{2}+3 x +2\right )}+\frac {4835 \ln \left (\sqrt {5}\, \sqrt {7}-\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right ) \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{659246}-\frac {22970 \ln \left (\sqrt {5}\, \sqrt {7}-\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right ) \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{2307361}+\frac {24175 \arctan \left (\frac {-\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right ) \left (2 \sqrt {5}\, \sqrt {7}+4\right )}{329623 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {45940 \arctan \left (\frac {-\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right ) \sqrt {5}\, \left (2 \sqrt {5}\, \sqrt {7}+4\right ) \sqrt {7}}{2307361 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {9980 \arctan \left (\frac {-\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right ) \sqrt {5}\, \sqrt {7}}{74431 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {4835 \ln \left (\sqrt {5}\, \sqrt {7}+\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right ) \sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{659246}+\frac {22970 \ln \left (\sqrt {5}\, \sqrt {7}+\sqrt {2 \sqrt {5}\, \sqrt {7}+4}\, \sqrt {5}\, \sqrt {1+2 x}+5+10 x \right ) \sqrt {7}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}}{2307361}+\frac {24175 \arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right ) \left (2 \sqrt {5}\, \sqrt {7}+4\right )}{329623 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {45940 \arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right ) \sqrt {5}\, \left (2 \sqrt {5}\, \sqrt {7}+4\right ) \sqrt {7}}{2307361 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}-\frac {9980 \arctan \left (\frac {\sqrt {5}\, \sqrt {2 \sqrt {5}\, \sqrt {7}+4}+10 \sqrt {1+2 x}}{\sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\right ) \sqrt {5}\, \sqrt {7}}{74431 \sqrt {10 \sqrt {5}\, \sqrt {7}-20}}\) \(643\)

[In]

int(1/(1+2*x)^(5/2)/(5*x^2+3*x+2)^2,x,method=_RETURNVERBOSE)

[Out]

9281400*(6769/61876*(x+1/2)*(1+2*x)^(1/2)*(5^(1/2)-9188/6769*7^(1/2))*(x^2+3/5*x+2/5)*(2*5^(1/2)*7^(1/2)+4)^(1
/2)*(10*5^(1/2)*7^(1/2)-20)^(1/2)*ln(5^(1/2)*7^(1/2)-(2*5^(1/2)*7^(1/2)+4)^(1/2)*5^(1/2)*(1+2*x)^(1/2)+5+10*x)
-6769/61876*(x+1/2)*(1+2*x)^(1/2)*(5^(1/2)-9188/6769*7^(1/2))*(x^2+3/5*x+2/5)*(2*5^(1/2)*7^(1/2)+4)^(1/2)*(10*
5^(1/2)*7^(1/2)-20)^(1/2)*ln(5^(1/2)*7^(1/2)+(2*5^(1/2)*7^(1/2)+4)^(1/2)*5^(1/2)*(1+2*x)^(1/2)+5+10*x)+(arctan
((5^(1/2)*(2*5^(1/2)*7^(1/2)+4)^(1/2)-10*(1+2*x)^(1/2))/(10*5^(1/2)*7^(1/2)-20)^(1/2))-arctan((5^(1/2)*(2*5^(1
/2)*7^(1/2)+4)^(1/2)+10*(1+2*x)^(1/2))/(10*5^(1/2)*7^(1/2)-20)^(1/2)))*(x+1/2)*(x^2+3/5*x+2/5)*(5^(1/2)*7^(1/2
)+8190/499)*(1+2*x)^(1/2)-3276/499*(x^3+9157/7020*x^2+469/585*x+34121/140400)*(10*5^(1/2)*7^(1/2)-20)^(1/2))/(
10*5^(1/2)*7^(1/2)-20)^(1/2)/(1+2*x)^(3/2)/(69220830*x^2+41532498*x+27688332)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 309, normalized size of antiderivative = 1.04 \[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=-\frac {3 \, \sqrt {217} {\left (20 \, x^{4} + 32 \, x^{3} + 25 \, x^{2} + 11 \, x + 2\right )} \sqrt {166745900 i \, \sqrt {31} - 1250454200} \log \left (\sqrt {217} \sqrt {166745900 i \, \sqrt {31} - 1250454200} {\left (9188 i \, \sqrt {31} + 15469\right )} + 28562896250 \, \sqrt {2 \, x + 1}\right ) - 3 \, \sqrt {217} {\left (20 \, x^{4} + 32 \, x^{3} + 25 \, x^{2} + 11 \, x + 2\right )} \sqrt {166745900 i \, \sqrt {31} - 1250454200} \log \left (\sqrt {217} \sqrt {166745900 i \, \sqrt {31} - 1250454200} {\left (-9188 i \, \sqrt {31} - 15469\right )} + 28562896250 \, \sqrt {2 \, x + 1}\right ) - 3 \, \sqrt {217} {\left (20 \, x^{4} + 32 \, x^{3} + 25 \, x^{2} + 11 \, x + 2\right )} \sqrt {-166745900 i \, \sqrt {31} - 1250454200} \log \left (\sqrt {217} {\left (9188 i \, \sqrt {31} - 15469\right )} \sqrt {-166745900 i \, \sqrt {31} - 1250454200} + 28562896250 \, \sqrt {2 \, x + 1}\right ) + 3 \, \sqrt {217} {\left (20 \, x^{4} + 32 \, x^{3} + 25 \, x^{2} + 11 \, x + 2\right )} \sqrt {-166745900 i \, \sqrt {31} - 1250454200} \log \left (\sqrt {217} {\left (-9188 i \, \sqrt {31} + 15469\right )} \sqrt {-166745900 i \, \sqrt {31} - 1250454200} + 28562896250 \, \sqrt {2 \, x + 1}\right ) + 434 \, {\left (140400 \, x^{3} + 183140 \, x^{2} + 112560 \, x + 34121\right )} \sqrt {2 \, x + 1}}{13844166 \, {\left (20 \, x^{4} + 32 \, x^{3} + 25 \, x^{2} + 11 \, x + 2\right )}} \]

[In]

integrate(1/(1+2*x)^(5/2)/(5*x^2+3*x+2)^2,x, algorithm="fricas")

[Out]

-1/13844166*(3*sqrt(217)*(20*x^4 + 32*x^3 + 25*x^2 + 11*x + 2)*sqrt(166745900*I*sqrt(31) - 1250454200)*log(sqr
t(217)*sqrt(166745900*I*sqrt(31) - 1250454200)*(9188*I*sqrt(31) + 15469) + 28562896250*sqrt(2*x + 1)) - 3*sqrt
(217)*(20*x^4 + 32*x^3 + 25*x^2 + 11*x + 2)*sqrt(166745900*I*sqrt(31) - 1250454200)*log(sqrt(217)*sqrt(1667459
00*I*sqrt(31) - 1250454200)*(-9188*I*sqrt(31) - 15469) + 28562896250*sqrt(2*x + 1)) - 3*sqrt(217)*(20*x^4 + 32
*x^3 + 25*x^2 + 11*x + 2)*sqrt(-166745900*I*sqrt(31) - 1250454200)*log(sqrt(217)*(9188*I*sqrt(31) - 15469)*sqr
t(-166745900*I*sqrt(31) - 1250454200) + 28562896250*sqrt(2*x + 1)) + 3*sqrt(217)*(20*x^4 + 32*x^3 + 25*x^2 + 1
1*x + 2)*sqrt(-166745900*I*sqrt(31) - 1250454200)*log(sqrt(217)*(-9188*I*sqrt(31) + 15469)*sqrt(-166745900*I*s
qrt(31) - 1250454200) + 28562896250*sqrt(2*x + 1)) + 434*(140400*x^3 + 183140*x^2 + 112560*x + 34121)*sqrt(2*x
 + 1))/(20*x^4 + 32*x^3 + 25*x^2 + 11*x + 2)

Sympy [F]

\[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=\int \frac {1}{\left (2 x + 1\right )^{\frac {5}{2}} \left (5 x^{2} + 3 x + 2\right )^{2}}\, dx \]

[In]

integrate(1/(1+2*x)**(5/2)/(5*x**2+3*x+2)**2,x)

[Out]

Integral(1/((2*x + 1)**(5/2)*(5*x**2 + 3*x + 2)**2), x)

Maxima [F]

\[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=\int { \frac {1}{{\left (5 \, x^{2} + 3 \, x + 2\right )}^{2} {\left (2 \, x + 1\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/(1+2*x)^(5/2)/(5*x^2+3*x+2)^2,x, algorithm="maxima")

[Out]

integrate(1/((5*x^2 + 3*x + 2)^2*(2*x + 1)^(5/2)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 638 vs. \(2 (205) = 410\).

Time = 0.53 (sec) , antiderivative size = 638, normalized size of antiderivative = 2.16 \[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(1/(1+2*x)^(5/2)/(5*x^2+3*x+2)^2,x, algorithm="giac")

[Out]

-1/7914248230*sqrt(31)*(24570*sqrt(31)*(7/5)^(3/4)*(2*sqrt(35) + 35)*sqrt(-140*sqrt(35) + 2450) - 117*sqrt(31)
*(7/5)^(3/4)*(-140*sqrt(35) + 2450)^(3/2) - 234*(7/5)^(3/4)*(140*sqrt(35) + 2450)^(3/2) - 49140*(7/5)^(3/4)*sq
rt(140*sqrt(35) + 2450)*(2*sqrt(35) - 35) + 244510*sqrt(31)*(7/5)^(1/4)*sqrt(-140*sqrt(35) + 2450) - 489020*(7
/5)^(1/4)*sqrt(140*sqrt(35) + 2450))*arctan(5/7*(7/5)^(3/4)*((7/5)^(1/4)*sqrt(1/35*sqrt(35) + 1/2) + sqrt(2*x
+ 1))/sqrt(-1/35*sqrt(35) + 1/2)) - 1/7914248230*sqrt(31)*(24570*sqrt(31)*(7/5)^(3/4)*(2*sqrt(35) + 35)*sqrt(-
140*sqrt(35) + 2450) - 117*sqrt(31)*(7/5)^(3/4)*(-140*sqrt(35) + 2450)^(3/2) - 234*(7/5)^(3/4)*(140*sqrt(35) +
 2450)^(3/2) - 49140*(7/5)^(3/4)*sqrt(140*sqrt(35) + 2450)*(2*sqrt(35) - 35) + 244510*sqrt(31)*(7/5)^(1/4)*sqr
t(-140*sqrt(35) + 2450) - 489020*(7/5)^(1/4)*sqrt(140*sqrt(35) + 2450))*arctan(-5/7*(7/5)^(3/4)*((7/5)^(1/4)*s
qrt(1/35*sqrt(35) + 1/2) - sqrt(2*x + 1))/sqrt(-1/35*sqrt(35) + 1/2)) - 1/15828496460*sqrt(31)*(117*sqrt(31)*(
7/5)^(3/4)*(140*sqrt(35) + 2450)^(3/2) + 24570*sqrt(31)*(7/5)^(3/4)*sqrt(140*sqrt(35) + 2450)*(2*sqrt(35) - 35
) + 49140*(7/5)^(3/4)*(2*sqrt(35) + 35)*sqrt(-140*sqrt(35) + 2450) - 234*(7/5)^(3/4)*(-140*sqrt(35) + 2450)^(3
/2) + 244510*sqrt(31)*(7/5)^(1/4)*sqrt(140*sqrt(35) + 2450) + 489020*(7/5)^(1/4)*sqrt(-140*sqrt(35) + 2450))*l
og(2*(7/5)^(1/4)*sqrt(2*x + 1)*sqrt(1/35*sqrt(35) + 1/2) + 2*x + sqrt(7/5) + 1) + 1/15828496460*sqrt(31)*(117*
sqrt(31)*(7/5)^(3/4)*(140*sqrt(35) + 2450)^(3/2) + 24570*sqrt(31)*(7/5)^(3/4)*sqrt(140*sqrt(35) + 2450)*(2*sqr
t(35) - 35) + 49140*(7/5)^(3/4)*(2*sqrt(35) + 35)*sqrt(-140*sqrt(35) + 2450) - 234*(7/5)^(3/4)*(-140*sqrt(35)
+ 2450)^(3/2) + 244510*sqrt(31)*(7/5)^(1/4)*sqrt(140*sqrt(35) + 2450) + 489020*(7/5)^(1/4)*sqrt(-140*sqrt(35)
+ 2450))*log(-2*(7/5)^(1/4)*sqrt(2*x + 1)*sqrt(1/35*sqrt(35) + 1/2) + 2*x + sqrt(7/5) + 1) - 4/10633*(890*(2*x
 + 1)^(3/2) + 233*sqrt(2*x + 1))/(5*(2*x + 1)^2 - 8*x + 3) - 16/1029*(48*x + 31)/(2*x + 1)^(3/2)

Mupad [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 226, normalized size of antiderivative = 0.76 \[ \int \frac {1}{(1+2 x)^{5/2} \left (2+3 x+5 x^2\right )^2} \, dx=-\frac {\frac {128\,x}{147}-\frac {5492\,{\left (2\,x+1\right )}^2}{31899}+\frac {4680\,{\left (2\,x+1\right )}^3}{10633}+\frac {144}{245}}{\frac {7\,{\left (2\,x+1\right )}^{3/2}}{5}-\frac {4\,{\left (2\,x+1\right )}^{5/2}}{5}+{\left (2\,x+1\right )}^{7/2}}+\frac {\sqrt {217}\,\mathrm {atan}\left (\frac {\sqrt {217}\,\sqrt {-12504542-\sqrt {31}\,1667459{}\mathrm {i}}\,\sqrt {2\,x+1}\,6884992{}\mathrm {i}}{1900211000023\,\left (-\frac {63259306496}{271458714289}+\frac {\sqrt {31}\,3435611008{}\mathrm {i}}{271458714289}\right )}-\frac {13769984\,\sqrt {31}\,\sqrt {217}\,\sqrt {-12504542-\sqrt {31}\,1667459{}\mathrm {i}}\,\sqrt {2\,x+1}}{58906541000713\,\left (-\frac {63259306496}{271458714289}+\frac {\sqrt {31}\,3435611008{}\mathrm {i}}{271458714289}\right )}\right )\,\sqrt {-12504542-\sqrt {31}\,1667459{}\mathrm {i}}\,10{}\mathrm {i}}{2307361}-\frac {\sqrt {217}\,\mathrm {atan}\left (\frac {\sqrt {217}\,\sqrt {-12504542+\sqrt {31}\,1667459{}\mathrm {i}}\,\sqrt {2\,x+1}\,6884992{}\mathrm {i}}{1900211000023\,\left (\frac {63259306496}{271458714289}+\frac {\sqrt {31}\,3435611008{}\mathrm {i}}{271458714289}\right )}+\frac {13769984\,\sqrt {31}\,\sqrt {217}\,\sqrt {-12504542+\sqrt {31}\,1667459{}\mathrm {i}}\,\sqrt {2\,x+1}}{58906541000713\,\left (\frac {63259306496}{271458714289}+\frac {\sqrt {31}\,3435611008{}\mathrm {i}}{271458714289}\right )}\right )\,\sqrt {-12504542+\sqrt {31}\,1667459{}\mathrm {i}}\,10{}\mathrm {i}}{2307361} \]

[In]

int(1/((2*x + 1)^(5/2)*(3*x + 5*x^2 + 2)^2),x)

[Out]

(217^(1/2)*atan((217^(1/2)*(- 31^(1/2)*1667459i - 12504542)^(1/2)*(2*x + 1)^(1/2)*6884992i)/(1900211000023*((3
1^(1/2)*3435611008i)/271458714289 - 63259306496/271458714289)) - (13769984*31^(1/2)*217^(1/2)*(- 31^(1/2)*1667
459i - 12504542)^(1/2)*(2*x + 1)^(1/2))/(58906541000713*((31^(1/2)*3435611008i)/271458714289 - 63259306496/271
458714289)))*(- 31^(1/2)*1667459i - 12504542)^(1/2)*10i)/2307361 - ((128*x)/147 - (5492*(2*x + 1)^2)/31899 + (
4680*(2*x + 1)^3)/10633 + 144/245)/((7*(2*x + 1)^(3/2))/5 - (4*(2*x + 1)^(5/2))/5 + (2*x + 1)^(7/2)) - (217^(1
/2)*atan((217^(1/2)*(31^(1/2)*1667459i - 12504542)^(1/2)*(2*x + 1)^(1/2)*6884992i)/(1900211000023*((31^(1/2)*3
435611008i)/271458714289 + 63259306496/271458714289)) + (13769984*31^(1/2)*217^(1/2)*(31^(1/2)*1667459i - 1250
4542)^(1/2)*(2*x + 1)^(1/2))/(58906541000713*((31^(1/2)*3435611008i)/271458714289 + 63259306496/271458714289))
)*(31^(1/2)*1667459i - 12504542)^(1/2)*10i)/2307361